3.1.100 \(\int \frac {\text {csch}(e+f x)}{\sqrt {a+b \sinh ^2(e+f x)}} \, dx\) [100]

Optimal. Leaf size=42 \[ -\frac {\tanh ^{-1}\left (\frac {\sqrt {a} \cosh (e+f x)}{\sqrt {a-b+b \cosh ^2(e+f x)}}\right )}{\sqrt {a} f} \]

[Out]

-arctanh(cosh(f*x+e)*a^(1/2)/(a-b+b*cosh(f*x+e)^2)^(1/2))/f/a^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.05, antiderivative size = 42, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, integrand size = 23, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.130, Rules used = {3265, 385, 212} \begin {gather*} -\frac {\tanh ^{-1}\left (\frac {\sqrt {a} \cosh (e+f x)}{\sqrt {a+b \cosh ^2(e+f x)-b}}\right )}{\sqrt {a} f} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Csch[e + f*x]/Sqrt[a + b*Sinh[e + f*x]^2],x]

[Out]

-(ArcTanh[(Sqrt[a]*Cosh[e + f*x])/Sqrt[a - b + b*Cosh[e + f*x]^2]]/(Sqrt[a]*f))

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 385

Int[((a_) + (b_.)*(x_)^(n_))^(p_)/((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> Subst[Int[1/(c - (b*c - a*d)*x^n), x]
, x, x/(a + b*x^n)^(1/n)] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - a*d, 0] && EqQ[n*p + 1, 0] && IntegerQ[n]

Rule 3265

Int[sin[(e_.) + (f_.)*(x_)]^(m_.)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]^2)^(p_.), x_Symbol] :> With[{ff = Free
Factors[Cos[e + f*x], x]}, Dist[-ff/f, Subst[Int[(1 - ff^2*x^2)^((m - 1)/2)*(a + b - b*ff^2*x^2)^p, x], x, Cos
[e + f*x]/ff], x]] /; FreeQ[{a, b, e, f, p}, x] && IntegerQ[(m - 1)/2]

Rubi steps

\begin {align*} \int \frac {\text {csch}(e+f x)}{\sqrt {a+b \sinh ^2(e+f x)}} \, dx &=-\frac {\text {Subst}\left (\int \frac {1}{\left (1-x^2\right ) \sqrt {a-b+b x^2}} \, dx,x,\cosh (e+f x)\right )}{f}\\ &=-\frac {\text {Subst}\left (\int \frac {1}{1-a x^2} \, dx,x,\frac {\cosh (e+f x)}{\sqrt {a-b+b \cosh ^2(e+f x)}}\right )}{f}\\ &=-\frac {\tanh ^{-1}\left (\frac {\sqrt {a} \cosh (e+f x)}{\sqrt {a-b+b \cosh ^2(e+f x)}}\right )}{\sqrt {a} f}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.13, size = 49, normalized size = 1.17 \begin {gather*} -\frac {\tanh ^{-1}\left (\frac {\sqrt {2} \sqrt {a} \cosh (e+f x)}{\sqrt {2 a-b+b \cosh (2 (e+f x))}}\right )}{\sqrt {a} f} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[Csch[e + f*x]/Sqrt[a + b*Sinh[e + f*x]^2],x]

[Out]

-(ArcTanh[(Sqrt[2]*Sqrt[a]*Cosh[e + f*x])/Sqrt[2*a - b + b*Cosh[2*(e + f*x)]]]/(Sqrt[a]*f))

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(112\) vs. \(2(36)=72\).
time = 1.15, size = 113, normalized size = 2.69

method result size
default \(-\frac {\sqrt {\left (a +b \left (\sinh ^{2}\left (f x +e \right )\right )\right ) \left (\cosh ^{2}\left (f x +e \right )\right )}\, \ln \left (\frac {\left (a +b \right ) \left (\cosh ^{2}\left (f x +e \right )\right )+2 \sqrt {a}\, \sqrt {b \left (\cosh ^{4}\left (f x +e \right )\right )+\left (a -b \right ) \left (\cosh ^{2}\left (f x +e \right )\right )}+a -b}{\sinh \left (f x +e \right )^{2}}\right )}{2 \sqrt {a}\, \cosh \left (f x +e \right ) \sqrt {a +b \left (\sinh ^{2}\left (f x +e \right )\right )}\, f}\) \(113\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(csch(f*x+e)/(a+b*sinh(f*x+e)^2)^(1/2),x,method=_RETURNVERBOSE)

[Out]

-1/2*((a+b*sinh(f*x+e)^2)*cosh(f*x+e)^2)^(1/2)/a^(1/2)*ln(((a+b)*cosh(f*x+e)^2+2*a^(1/2)*(b*cosh(f*x+e)^4+(a-b
)*cosh(f*x+e)^2)^(1/2)+a-b)/sinh(f*x+e)^2)/cosh(f*x+e)/(a+b*sinh(f*x+e)^2)^(1/2)/f

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csch(f*x+e)/(a+b*sinh(f*x+e)^2)^(1/2),x, algorithm="maxima")

[Out]

integrate(csch(f*x + e)/sqrt(b*sinh(f*x + e)^2 + a), x)

________________________________________________________________________________________

Fricas [B] Leaf count of result is larger than twice the leaf count of optimal. 236 vs. \(2 (36) = 72\).
time = 0.62, size = 572, normalized size = 13.62 \begin {gather*} \left [\frac {\log \left (-\frac {{\left (a + b\right )} \cosh \left (f x + e\right )^{4} + 4 \, {\left (a + b\right )} \cosh \left (f x + e\right ) \sinh \left (f x + e\right )^{3} + {\left (a + b\right )} \sinh \left (f x + e\right )^{4} + 2 \, {\left (3 \, a - b\right )} \cosh \left (f x + e\right )^{2} + 2 \, {\left (3 \, {\left (a + b\right )} \cosh \left (f x + e\right )^{2} + 3 \, a - b\right )} \sinh \left (f x + e\right )^{2} - 2 \, \sqrt {2} {\left (\cosh \left (f x + e\right )^{2} + 2 \, \cosh \left (f x + e\right ) \sinh \left (f x + e\right ) + \sinh \left (f x + e\right )^{2} + 1\right )} \sqrt {a} \sqrt {\frac {b \cosh \left (f x + e\right )^{2} + b \sinh \left (f x + e\right )^{2} + 2 \, a - b}{\cosh \left (f x + e\right )^{2} - 2 \, \cosh \left (f x + e\right ) \sinh \left (f x + e\right ) + \sinh \left (f x + e\right )^{2}}} + 4 \, {\left ({\left (a + b\right )} \cosh \left (f x + e\right )^{3} + {\left (3 \, a - b\right )} \cosh \left (f x + e\right )\right )} \sinh \left (f x + e\right ) + a + b}{\cosh \left (f x + e\right )^{4} + 4 \, \cosh \left (f x + e\right ) \sinh \left (f x + e\right )^{3} + \sinh \left (f x + e\right )^{4} + 2 \, {\left (3 \, \cosh \left (f x + e\right )^{2} - 1\right )} \sinh \left (f x + e\right )^{2} - 2 \, \cosh \left (f x + e\right )^{2} + 4 \, {\left (\cosh \left (f x + e\right )^{3} - \cosh \left (f x + e\right )\right )} \sinh \left (f x + e\right ) + 1}\right )}{2 \, \sqrt {a} f}, \frac {\sqrt {-a} \arctan \left (\frac {\sqrt {2} {\left (\cosh \left (f x + e\right )^{2} + 2 \, \cosh \left (f x + e\right ) \sinh \left (f x + e\right ) + \sinh \left (f x + e\right )^{2} + 1\right )} \sqrt {-a} \sqrt {\frac {b \cosh \left (f x + e\right )^{2} + b \sinh \left (f x + e\right )^{2} + 2 \, a - b}{\cosh \left (f x + e\right )^{2} - 2 \, \cosh \left (f x + e\right ) \sinh \left (f x + e\right ) + \sinh \left (f x + e\right )^{2}}}}{b \cosh \left (f x + e\right )^{4} + 4 \, b \cosh \left (f x + e\right ) \sinh \left (f x + e\right )^{3} + b \sinh \left (f x + e\right )^{4} + 2 \, {\left (2 \, a - b\right )} \cosh \left (f x + e\right )^{2} + 2 \, {\left (3 \, b \cosh \left (f x + e\right )^{2} + 2 \, a - b\right )} \sinh \left (f x + e\right )^{2} + 4 \, {\left (b \cosh \left (f x + e\right )^{3} + {\left (2 \, a - b\right )} \cosh \left (f x + e\right )\right )} \sinh \left (f x + e\right ) + b}\right )}{a f}\right ] \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csch(f*x+e)/(a+b*sinh(f*x+e)^2)^(1/2),x, algorithm="fricas")

[Out]

[1/2*log(-((a + b)*cosh(f*x + e)^4 + 4*(a + b)*cosh(f*x + e)*sinh(f*x + e)^3 + (a + b)*sinh(f*x + e)^4 + 2*(3*
a - b)*cosh(f*x + e)^2 + 2*(3*(a + b)*cosh(f*x + e)^2 + 3*a - b)*sinh(f*x + e)^2 - 2*sqrt(2)*(cosh(f*x + e)^2
+ 2*cosh(f*x + e)*sinh(f*x + e) + sinh(f*x + e)^2 + 1)*sqrt(a)*sqrt((b*cosh(f*x + e)^2 + b*sinh(f*x + e)^2 + 2
*a - b)/(cosh(f*x + e)^2 - 2*cosh(f*x + e)*sinh(f*x + e) + sinh(f*x + e)^2)) + 4*((a + b)*cosh(f*x + e)^3 + (3
*a - b)*cosh(f*x + e))*sinh(f*x + e) + a + b)/(cosh(f*x + e)^4 + 4*cosh(f*x + e)*sinh(f*x + e)^3 + sinh(f*x +
e)^4 + 2*(3*cosh(f*x + e)^2 - 1)*sinh(f*x + e)^2 - 2*cosh(f*x + e)^2 + 4*(cosh(f*x + e)^3 - cosh(f*x + e))*sin
h(f*x + e) + 1))/(sqrt(a)*f), sqrt(-a)*arctan(sqrt(2)*(cosh(f*x + e)^2 + 2*cosh(f*x + e)*sinh(f*x + e) + sinh(
f*x + e)^2 + 1)*sqrt(-a)*sqrt((b*cosh(f*x + e)^2 + b*sinh(f*x + e)^2 + 2*a - b)/(cosh(f*x + e)^2 - 2*cosh(f*x
+ e)*sinh(f*x + e) + sinh(f*x + e)^2))/(b*cosh(f*x + e)^4 + 4*b*cosh(f*x + e)*sinh(f*x + e)^3 + b*sinh(f*x + e
)^4 + 2*(2*a - b)*cosh(f*x + e)^2 + 2*(3*b*cosh(f*x + e)^2 + 2*a - b)*sinh(f*x + e)^2 + 4*(b*cosh(f*x + e)^3 +
 (2*a - b)*cosh(f*x + e))*sinh(f*x + e) + b))/(a*f)]

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\operatorname {csch}{\left (e + f x \right )}}{\sqrt {a + b \sinh ^{2}{\left (e + f x \right )}}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csch(f*x+e)/(a+b*sinh(f*x+e)**2)**(1/2),x)

[Out]

Integral(csch(e + f*x)/sqrt(a + b*sinh(e + f*x)**2), x)

________________________________________________________________________________________

Giac [B] Leaf count of result is larger than twice the leaf count of optimal. 78 vs. \(2 (36) = 72\).
time = 0.49, size = 78, normalized size = 1.86 \begin {gather*} \frac {2 \, \arctan \left (-\frac {\sqrt {b} e^{\left (2 \, f x + 2 \, e\right )} - \sqrt {b e^{\left (4 \, f x + 4 \, e\right )} + 4 \, a e^{\left (2 \, f x + 2 \, e\right )} - 2 \, b e^{\left (2 \, f x + 2 \, e\right )} + b} - \sqrt {b}}{2 \, \sqrt {-a}}\right )}{\sqrt {-a} f} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csch(f*x+e)/(a+b*sinh(f*x+e)^2)^(1/2),x, algorithm="giac")

[Out]

2*arctan(-1/2*(sqrt(b)*e^(2*f*x + 2*e) - sqrt(b*e^(4*f*x + 4*e) + 4*a*e^(2*f*x + 2*e) - 2*b*e^(2*f*x + 2*e) +
b) - sqrt(b))/sqrt(-a))/(sqrt(-a)*f)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.02 \begin {gather*} \int \frac {1}{\mathrm {sinh}\left (e+f\,x\right )\,\sqrt {b\,{\mathrm {sinh}\left (e+f\,x\right )}^2+a}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(sinh(e + f*x)*(a + b*sinh(e + f*x)^2)^(1/2)),x)

[Out]

int(1/(sinh(e + f*x)*(a + b*sinh(e + f*x)^2)^(1/2)), x)

________________________________________________________________________________________